Uma Teoria de Todos, por Michael Muthukrishna
O livro “A Theory of Everyone: Who We Are, How We Got Here, and Where We’re Going” (2023) de Michael Muthukrishna é um sucessor de um conjunto de livros que usam a ciência para construir e apresentar uma visão global do ser humano neste planeta — tais como “Sapiens” (2011) de Y. N. Harari, “Guns, Germs and Steel” (1997) de Jared Diamond, e “Cosmos” (1980) de Carl Sagan —, indo mais longe, porque recorre ao conhecimento mais atual da ciência, mas mantendo as fragilidades naturais da generalização de sistemas complexos. Como tal, deve ser lido como uma narrativa em busca de uma visão agregadora de valor e significado, sabendo que a natureza não é planeada, mas improvisada. Ou seja, apesar da enorme credibilidade da argumentação apresentada por este autor, e pelos anteriores, é sempre necessário manter o véu da dúvida ativo.
Estas narrativas são imensamente atrativas para os nossos cérebros que estão desenhados para a construção de padrões e atribuição de significados. Tudo para nós tem de ter uma explicação, tudo tem de ter uma razão, tudo tem de ter um sentido. Pelo que estas grandes teorizações acabam não se distinguindo muito daquelas que originam as grandes religiões. Contudo, a realidade que habitamos não é fruto de planificação, antes pelo contrário, é fruto do acaso e do encontro entre milhões e milhões de microssistemas profundamente variáveis, o que torna a construção de teorias gerais uma impossibilidade prática. Mantendo este pressuposto, não posso deixar de dizer que a proposta de Michael Muthukrishna é amplamente sustentada com dados, argumentada de modo acessível, e por isso altamente recomendada.
Muthukrishna apresenta uma nova teoria baseada em 4 grandes “leis das vida”:
- Lei da Energia;
- Lei da Inovação;
- Lei da Cooperação;
- Lei da Evolução.
As 4 leis funcionam como um sistema hierárquico, sendo a Lei da Energia que garante todas as outras. Esta ideia de que tudo o que nos define assenta na energia que nos faz mover, tem vindo a ser discutida recentemente por vários autores nomeadamente Vaclav Smil ou Nick Lane, contudo Muthukrishna vai muito mais longe na leitura das suas implicações, nomeadamente quando propõe as restantes 3 leis.
Muthukrishna defende que a energia não oferece apenas a base para o movimento, ela molda toda a sua manutenção e variabilidade, desde as células às sociedades humanas. Ou seja, abundância de energia impulsiona a inovação, a cooperação e a evolução, enquanto a escassez cria o contrário, a destruição, a competição e a regressão.
Um dos pontos que exemplifica esta ideia central da energia, simples mas inspiradora, é o modo como pudemos estender as 24h de um dia para produzir mais trabalho através das máquinas que inventámos. Retiramos energia dos fósseis, colocamo-la nas máquinas, e estas produzem o equivalente a várias jornadas de trabalho humano, multiplicando dezenas ou centenas de vezes as nossas horas de vida. E de onde veio essa multiplicação de horas? De milhões de anos de sedimentação na Terra!
A discussão inicia-se com as implicações desde o Big Bang, mas depois centra-se nos processos de criação de cultura humana, estabelecendo paralelos entre a biologia e sociologia, defendendo mesmo uma supremacia da cultura sobre os genes. A principal razão para o fazer assenta na original ideia que apresenta na sustentação da diferenciação entre humanos e animais.
Para Muthukrishna, foi a nossa capacidade de criar e transmitir cultura, um corpo partilhado de conhecimentos e competências, que permitiu o domínio humano. Ou seja, a expansão da inovação, cooperação e evolução. Não foi a nossa inteligência que nos tornou mais dotados do que os animais, foi antes a capacidade de trabalhar a partir do conhecimento criado por quem veio antes de nós. Aqui o autor faz quase uma homenagem à ciência, já que esta se define exatamente por uma construção realizada sempre com base no reconhecimento do que vem de antes. Como Newton disse, “If I have seen further, it is by standing on the shoulders of giants” (1675). Diga-se que existem algumas teorizações parecidas assentes na ideia de que a vida é informação, contudo a passagem para um modelo assente em energia permite ligar totalmente a natureza e a cultura.
Para quantificar o impacto da energia na inovação o autor criou o conceito de retorno energético sobre o investimento (EROI), explicando que quanto menor é o retorno energético, menor é a inovação. Usa a cronologia do petróleo para demonstrar os impactos nos picos de inovação e progresso mundiais. À medida que a presença de energia acessível decresce, como está a acontecer com o petróleo, a evolução começa a estagnar, e com ela vem todos os impactos nefastos na cooperação a que já começámos a assistir.
Por isso, Muthukrishna é um grande defensor da energia Nuclear, que vê como a única saída para os conflitos que estamos a viver. Sem energia abundante, não há inovação, e com essa diminuição cria-se a necessidade por maior competição que acaba por tender para a destruição do que foi previamente construído.
Concordando ou não com a teoria, não vejo como possível reverter o problema das alterações climáticas sem destruir a qualidade de vida de muitos milhões de seres humanos. Muito daquilo que foi conseguido no último século terá de ser revertido se não encontrarmos formas alternativas ao petróleo e carvão. E isso não acontecerá sem guerras devastadoras. Pelo que entre a destruição do que somos hoje e os perigos do nuclear, escolho claramente o nuclear.
Não queria terminar este pequena resenha sem dar conta do historial particular de Michael Muthukrishna, que é atualmente professor associado de psicologia económica na London School of Economics, por considerar relevante para esta sua visão agregadora. O autor vivia no Sri Lanka quando se deu a guerra civil, nos anos 1980. Foi viver para Papua Nova Guiné nos anos 1990, e acabou testemunhando a violenta revolta militar do caso Sandline. Depois, viveu no Botswana quando o Apartheid terminou na vizinha África do Sul, e por fim vivia em Londres aquando dos ataques bombistas de 7/7. Por isso, diz-nos, começou a interrogar-se sobre a possibilidade de existirem padrões, princípios subjacentes que nos pudessem ajudar a compreender melhor a guerra e a política, que ajudassem a compreender porque uns evoluem e outros se destroem.
EXCERTOS:
-----------------------------------------------------------------
ENERGY and TIME
"We all face a trade-off in how much time to allocate to work, to our families, to our friends, and to ourselves.
(...)
No matter what weird psychology or ceremonies I use, there is a limit to my efficiency. At the end of the day, I still have only twenty-four hours, of which continued efficiency requires eight dedicated to sleep – efficient sleep of course, optimized for letting ideas ruminate. Imagine how much more you or I could do if we had more than twenty-four hours.
There are ways to get more than twenty-four hours. One way is to supplement what we do with machines. We multiply our time by harnessing energy to do work for us."
-----------------------------------------------------------------
UNIVERSE LIFE
"The universe is about 14 billion years old. Earth is about a third of that, at around 4.5 billion years old. Not long after its formation a planet-sized object, around the size of Mars, smashed into our young planet. This violent collision ejected enough debris to create the Moon."
(...)
"the Moon used to be a lot closer to Earth. Tides are created by the Moon's gravity pulling on the oceans and so the early Earth had massive tides, stirring the primordial chemical soup, moving warmth and sloshing the oceans back and forth over the land. This created tidal pools that brought ocean life to land and tidal-pool life to the oceans. It was thanks to this gravitational energy that life could begin.
Energy gave motion to life. Indeed, that is what life is doing – trying to harness and control as much energy as it can to manipulate resources to make more of itself. More energy means more motion to access more resources."
...
"Abiogenesis is the process by which non-life became life, and there is still no consensus on exactly how that happened. We don't know how it was that the first self-replicating chemical compounds became the first self-replicating simple single cells, but by around 500 million to 1 billion years later (3.5 to 4 billion years ago) we see the beginning of life.
...
"Cells are a bit like mini-bodies with internal structure. We have organs; cells have organelles. More complex early single-celled life resembled modern prokaryotic cells. All that really means is that these were cells without either a nucleus in which DNA is normally stored, or separate organelles that would normally perform specific functions."
...
About 3.5 billion years ago there was a mutation that allowed these simple single-cell life forms to store the sun's energy for later use: photosynthesis.
...
Around 3 billion years ago another innovative mutation adds water to the photosynthesis reaction. This innovation improves the efficiency of photosynthesis, but there's a cost. This new photosynthesis starts polluting the world.
With oxygen.
...
We're so used to thinking about oxygen as a good thing. The air we breathe is 21% oxygen and it's so critical to animal life that we forget how corrosive it is.
...
Around 2.5 billion years ago a disaster hit -- the Great Oxygenation Event. Oxygen was poison for most life on Earth at this point. It also combined with the methane in the air to produce carbon dioxide.
...
Earth actually cools down and goes through a long ice age. Too little heat and too much oxygen create a hostile environment that kills almost all life. But a changed environment is also an opportunity for evolution. The Great Oxygenation Event enabled our earliest ancestors to evolve.
...
And so evolution favored new kinds of organisms. Instead of specializing in directly using solar energy through photosynthesis – a long and arduous process that offers only enough energy to grow and reproduce at plant pace – these new organisms specialized in eating other organisms. Like raiders exploiting hoarders, these new organisms skipped the step of creating energy for themselves and instead just learned how to eat stored solar energy.
...
Life began to rely on other life for energy. Indeed, this is the process that led to mitochondria. At some point in this cell-eat-cell world, an exceedingly improbable event happened: one prokaryote ate another and rather than digest it, allowed it to live inside and keep creating energy for the host – the evolution of mitochondria.
...
You and I evolved from this earliest cooperative relationship, which created new life forms called eukaryotes. You could say that both competition and cooperation are in our genes. Indeed, we still do something similar by allowing billions of bacteria – your microbiome – to live within us and help us digest food. You do it deliberately if you take probiotics or eat fermented foods like yogurt and sauerkraut. These organisms in our microbiome aren't just helpful, they're essential – we would die without them.
...
At this point life only has one source of innovation with which to create diversity – mutation – mistakes during cloning. But around 1.2 billion years ago cells discover the joy of sex.
Sex, even today, is a new kind of cooperation between two individuals with different genes. Mixing genetic traits means swapping the best genetic tricks creating diversity through recombination.
...
The earliest animals were like bags with a single orifice. Nutrients went in that orifice, which served as a mouth, and waste came out of that same orifice, which also served as an anus. I think we can all agree that evolution separating our mouth from our anus was a step up. This turned us from bags to tubes, an architecture we still use today.
...
We are still tubes. Food goes in one end and waste comes out the other. Don't get me wrong, our tube bodies have become fancier in the struggle for survival, in the competitive mating market, and in the competition to eat one another. They've absorbed entire other organisms as part of a microbiome – you are more like the Amazon rainforest, an entire ecology rather than just a single organism. Tubes like ourselves have added appendages to help move around and interact with the world – arms and legs, fins and tentacles. And they've added senses to interpret specific features of the world that allow them to find mates, eat, and avoid being eaten."
-----------------------------------------------------------------
RACIONAL or IMITATION
" what the sapiens in Homo sapiens really means: ‘wise’. But we're wise not because we're particularly rational, logical, or good at causal reasoning. We're wise because wise people learn from others. Our species learned, as my collaborator Joe Henrich once put it, that it's better to be social than smart. But it's more than that – by being social, we could become smart."
(…)
“In 2005 two researchers from St Andrews – Victoria Horner and Andrew Whiten – gathered a group of young Scottish children and a group of young Ngamban chimps and gave them the choice to copy or think for themselves. The experimenters presented both groups with a black box. The box had a hole on the top and a hole on the side. Inside the box was a reward: a piece of fruit for the chimps, a sticker for the children. The experimenter showed the chimps and the children how to get the reward by poking a stick through the top hole and then the side hole.
They then handed the stick to the chimps -- They imitated the experimenters perfectly, first poking the stick through the top and then through the side to get the fruit.
The experimenters then did the same thing with the children – showing them how to poke the stick through the top hole and then the side hole. The children, just like the chimps, poked the stick through the top and then through the side to get the sticker. Happy children.
Then came the key treatment condition. The experimenters replaced the black box with a clear, transparent box that was otherwise identical. Because the box was clear, both the chimps and the children could now see that the first action – poking the stick through the top hole – did nothing. In fact there was a separation inside the box, so only the side hole accessed the reward. The top hole was irrelevant. But again, the experimenters poked the stick through the top hole and then through the side hole.
They handed the stick to the chimps. What did the chimps do? Chimps are smart! They ignored the top hole and just retrieved the fruit from the side hole. They engaged in what scientists call ‘emulation’ rather than ‘imitation’.
Then, once again the experimenters poked the stick through the top hole and then through the side hole. They then handed the stick to the children. What did the children do? Children are smart! Or are they? The kids continued to poke the stick through the irrelevant top hole and then through the side hole.
It's not that the children didn't understand the causality – later experiments confirmed that they understood it just as well as the chimps. But the children assumed that the adults knew something that they didn't. So instead of emulating and trying to reverse engineer the reasons for the adults’ actions, they simply imitated. They copied all actions because they assumed that the seemingly pointless two-poke method is just how people do it. Human children ape better than apes do. And in so doing, the human children weren't making a mistake, they were becoming brilliant.
By copying successful behaviors, beliefs, tools, and ways of thinking from the previous generation, even without understanding why these work, human children engage in a process unique to our species that allows them to surpass the limits of their own cognitive abilities. It is a cultural evolutionary process that has led to antibiotics, democratic governments, and nuclear reactors. It has allowed humans to build on each other's work and to take for granted the work already done in the past in order to narrow the set of things we presently need to develop and innovate on.
In this case, the children were mistaken about one thing: they assumed that the adults were demonstrating the best strategy. In fact the adults were deliberately inefficient for the purposes of the experiment (which also hints about movements and moments of mass human folly, which I will discuss later).
But in the world beyond this experiment, and by and large as far as human progress has been concerned, children learn from relatively wise adults who, when they themselves were children, imitated their adults, who when they were children imitated their adults, and so on back in time. Each generation of children, the next generation of adults, thereby acquired a head full of successful recipes – tools, techniques, and traditions. Not through understanding but by selective trust. Our lives are filled with acquired recipes, the origins of which we have long forgotten. This reliance on socially transmitted information is, in essence, a shortcut to brilliance."
-----------------------------------------------------------------
Comentários
Enviar um comentário